Towards a Homotopy Theory of Higher Dimensional Transition Systems

نویسنده

  • PHILIPPE GAUCHER
چکیده

We proved in a previous work that Cattani-Sassone’s higher dimensional transition systems can be interpreted as a small-orthogonality class of a topological locally finitely presentable category of weak higher dimensional transition systems. In this paper, we turn our attention to the full subcategory of weak higher dimensional transition systems which are unions of cubes. It is proved that there exists a left proper combinatorial model structure such that two objects are weakly equivalent if and only if they have the same cubes after simplification of the labelling. This model structure is obtained by Bousfield localizing a model structure which is left determined with respect to a class of maps which is not the class of monomorphisms. We prove that the higher dimensional transition systems corresponding to two process algebras are weakly equivalent if and only if they are isomorphic. We also construct a second Bousfield localization in which two bisimilar cubical transition systems are weakly equivalent. The appendix contains a technical lemma about smallness of weak factorization systems in coreflective subcategories which can be of independent interest. This paper is a first step towards a homotopical interpretation of bisimulation for higher dimensional transition systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبیه سازی ذوب سیستمهای دو بعدی

  The study of a two-dimensional (2-D) system started nearly half a century ago when Peierls and Landau showed the lack of long range translational order in a two-dimensional solid. In 1968, Mermin proved that despite the absence of long range translational order. Two-dimensional solids can still exhibit a different kind of long range bond orientation. During the last decade, fascinating theori...

متن کامل

VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION

A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.

متن کامل

Computing Homotopy Types Using Crossed N -cubes of Groups∗

The aim of this paper is to explain how, through the work of a number of people, some algebraic structures related to groupoids have yielded algebraic descriptions of homotopy n-types. Further, these descriptions are explicit, and in some cases completely computable, in a way not possible with the traditional Postnikov systems, or with other models, such as simplicial groups. These algebraic st...

متن کامل

Homotopy analysis and Homotopy Pad$acute{e}$ methods for two-dimensional coupled Burgers\' equations

In this paper, analytic solutions of two-dimensional coupled Burgers' equations are obtained by the Homotopy analysis and the Homotopy Pad$acute{e}$ methods. The obtained approximation by using Homotopy method contains an auxiliary parameter which is a simple way to control and adjust the convergence region and rate of solution series. The approximation solutions by $[m,m]$ Homotopy Pad$acute{e...

متن کامل

Homotopy Bisimilarity for Higher-Dimensional Automata

We introduce a new category of higher-dimensional automata in which the morphisms are functional homotopy simulations, i.e. functional simulations up to concurrency of independent events. For this, we use unfoldings of higher-dimensional automata into higher-dimensional trees. Using a notion of open maps in this category, we define homotopy bisimilarity. We show that homotopy bisimilarity is eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011